This up-to-date book thoroughly examines recent advancements in the preparation, characterization, and reactivity of gold catalysts. It is an excellent source of information on the current uses and potentiality of gold catalysis and a must-have for even nonexperts in the field.

Prof. Dr. Fabrizio Cavani
Università di Bologna, Bologna

“This book presents a comprehensive overview of gold-based catalysts, summarizing the most interesting aspects of their synthesis, characterization, and both homogeneous and heterogeneous catalytic performance. It also provides excellent examples of the preparation and controlled modification of these catalysts, covering the main spectroscopic techniques for determining the state of gold.”

Dr. Jose M. Lopez Nieto
Research Professor, CSIC, Madrid, Spain

“This book, written by key scientists in the field, answers many open questions on the synthesis, characterization, and catalytic reactivity of gold-based catalysts, their characterization, and advances in catalytic behavior in liquid- and gas-phase reactions. It is a valuable book for PhD students, research managers, and experts.”

Prof. Gabriele Centi
University of Messina, Italy
President, European Research Institute of Catalysis, Belgium

Since the first report on alcohol oxidation in 1998, many studies have highlighted some peculiarity of gold with respect to other metals. Some analogies have been found between gas and liquid phases, but the big challenge to operate in a condensed phase lies in the role of the solvent in tuning the reactant–catalyst contact. Liquid-phase oxidation has numerous applications. However, many studies on gold catalysts have been devoted to gas-phase reactions. Only recently has the scientific community approached gold-catalyzed liquid-phase oxidation. This complete, exhaustive book covers the topic of gold-based catalyst applications in selective oxidation in the liquid phase. It presents a rational state of the art and will be useful for researchers, even those not yet involved in the field.

Laura Prati
is an associate professor of inorganic chemistry at Università degli Studi di Milano since 2001. She is a chemistry graduate (1983), received her specialization in “Tecniche Analitiche per la Chimica Organica Fine” from Politecnico of Milan in 1985, and was awarded a PhD in industrial chemistry in 1988. Her principal scientific interests are catalytic hydrogenation and oxidation reactions, and she has been involved in catalytic applications of gold since 1986.

Alberto Villa
is an assistant professor at the University of Milan. He received his PhD in industrial chemistry in 2007 from the University of Milan, and his thesis focused on the development of gold-based catalysts for liquid-phase reactions. After two years of a postdoc program at the Fritz Haber Institute of Max Planck Gesellschaft, Berlin, with Prof. Robert Schlögl, he joined Laura Prati’s group in 2009. His research focuses on the development of heterogeneous catalysts for biomass transformation. He has co-authored over 60 publications in peer-reviewed journals.
Gold Catalysis
Gold Catalysis
Preparation, Characterization, and Applications

edited by
Laura Prati
Alberto Villa
Contents

Preface xv

1 Deposition-Reduction 1
 Catherine Louis
 1.1 Introduction 1
 1.2 Synthesis Strategies 2
 1.2.1 Gold Precursor: Gold Speciation 2
 1.2.1.1 Warnings concerning the preparation of supported gold catalysts 3
 1.3 Impregnation 4
 1.3.1 Principle 4
 1.3.2 Mere Impregnation 4
 1.4 Anion Adsorption 6
 1.4.1 Principle of Ion Adsorption 6
 1.4.2 Gold Anion Adsorption 7
 1.4.3 Washing with Ammonia 8
 1.5 Cation Adsorption 11
 1.6 Deposition-Precipitation 13
 1.6.1 Principle of Deposition-Precipitation 13
 1.6.2 Deposition-Precipitation by Addition of a Base 14
 1.6.2.1 Deposition-precipitation at a fixed pH 14
 1.6.2.2 Influence of pH 16
 1.6.2.3 Mechanism of deposition-precipitation 18
 1.6.2.4 A base apart, NH₄OH, a precipitating agent, or a complexing agent? 20
 1.6.3 Deposition-Precipitation by Addition of a Delay Base 22
Contents

1.6.3.1 Deposition-precipitation with urea 22
1.6.3.2 Mechanism of deposition-precipitation 24
1.7 Conclusion 26

2 Immobilization of Preformed Gold Nanoparticles 39
Carine E. Chan-Thaw, Alberto Villa, and Laura Prati
2.1 Introduction 39
2.2 Nucleation and Growth Processes 41
 2.2.1 Homogeneous Nucleation: Growth 41
 2.2.2 Heterogeneous Nucleation: Growth 44
2.3 Stabilization of Gold Colloids 45
 2.3.1 Importance of Stabilization 45
 2.3.2 Electrostatic Stabilization 48
 2.3.3 Steric Stabilization 49
 2.3.4 Electrosteric Stabilization 50
2.4 Preparation of Gold Nanoparticles 51
 2.4.1 The Stabilizers 51
 2.4.1.1 Electrostatic stabilizers 51
 2.4.1.2 Steric stabilizers 52
 2.4.1.3 Electrosteric stabilizers 52
 2.4.2 Nature of the Reducing Agent 53
 2.4.2.1 Chemical reduction of metal salts 53
 2.4.2.2 Electrochemical reduction 58
 2.4.2.3 Other methods 58
2.5 Immobilization of Nanoparticles 58
 2.5.1 Adsorption 59
 2.5.2 Grafting 63
2.6 Conclusions 65

3 Solvated Metal Atoms in the Preparation of Supported Gold Catalysts 73
Claudio Evangelisti, Eleanor Schiavi, Laura Antonella Aronica, Rinaldo Psaro, Antonella Balerna, and Gianmario Martra
3.1 Introduction 73
3.2 Synthetic Strategy 74
3.3 Metal Vapor Synthesis for Preparing Supported Gold Nanoparticles 77
3.3.1 Preparation of Solvated Gold Atoms 77
3.3.2 Supported Catalysts from Solvated Gold Atoms 82
3.4 MVS-Derived Au–PD Bimetallic Catalysts 90
3.5 Concluding Remarks 92

4 Microgels as Exotemplates in the Preparation of Au Nanoclusters 99
Andrea Biffis and Paolo Centomo
4.1 Introduction 99
4.2 Microgel Preparation 101
4.3 Microgel-Stabilized Metal Nanoclusters 103
4.4 Advantages of Microgel-Stabilized Metal Nanoclusters 109
4.5 Microgel-Stabilized Gold Nanoclusters: Catalytic Applications 112
4.6 Conclusions 119

5 Miscellaneous 123
Carine E. Chan-Thaw, Laura Prati, and Alberto Villa
5.1 Introduction 123
5.2 Co-Precipitation 124
5.3 Chemical Vapor Deposition 125
5.4 Solid Grinding 127
5.5 Physical Vapor Deposition 128
5.5.1 Thermal Evaporation 128
5.5.2 Sputtering 129
5.6 Conclusions 131

6 Transmission Electron Microscopy on Au-Based Catalysts 135
Di Wang
6.1 Introduction 135
6.2 The Principle of Transmission Electron Microscopy 137
6.2.1 Electron Diffraction 137
6.2.2 HRTEM and HAADF STEM 138
6.2.3 Analytic TEM 140
6.2.4 Electron Tomography 142
6.3 Structures of Au-Based Catalysts 144
Contents

6.3.1 Crystal Structure of Au Nanoparticles 144
6.3.2 Interface and Surface Structures of Supported Au Nanoparticles 147
6.3.3 Structure of Au-Based Bimetallic Catalysts 156
6.4 Outlook 160

7 X-Ray Photoelectron Spectroscopy Characterization of Gold Catalysts 171
 \textit{Gabriel M. Veith}
7.1 Introduction 171
7.2 X-Ray Photoelectron Spectroscopy 173
7.3 XPS of Gold Catalysts: Study of Gold Oxidation States 175
 7.3.1 Evolution of Gold Oxidation State with Synthesis 176
 7.3.2 Correlation of Oxidation State to Catalytic Activity 177
 7.3.3 Identification of Supported Gold Nanoparticle Oxidation States 179
7.4 Postmortem Analysis 184
 7.4.1 Evolution of Gold Oxidation State with Reaction 184
7.4.2 Changes in Support Oxygen Chemistry with Synthesis 185
 7.4.3 Changes in Support Metal Oxide Chemistry after Catalytic Reaction 189
 7.4.4 Quantifying Catalyst Coarsening 191
 7.4.5 Chemical Deactivation/Blocking of Gold Catalysts 193
 7.4.6 XPS to Understand the Nucleation and Growth of Gold Nanoparticles 193
7.5 Frontiers in XPS Instrumentation 194
7.6 Conclusions and Perspective 195

8 FTIR Techniques for the Characterization of Au(-Ceria)-Based Catalysts 205
 \textit{Maela Manzoli and Floriana Vindigni}
8.1 An Overview of Gold/Ceria-Based Catalysts 206
 8.1.1 Preparation of the Samples 209
8.2 Ex situ CO Adsorption at 100 K 212
8.2.1 Some Insights into CO Adsorption 212
8.2.2 As-Received Au/CeO₂ Catalyst 214
8.2.3 Effect of Pre-Oxidation at 473 K on the Exposed Sites 215
8.2.4 Au/CeO₂ Catalyst Reduced in H₂ 217
8.3 CO–O₂ Interaction at Low Temperature up to Room Temperature 220
8.3.1 Effect of Doping: Au Supported on Zn-Modified Ceria 221
8.3.2 Effect of Doping by Other Elements (Sm, La) 224
8.3.3 On the Modification of the Support by Iron Oxide 227
8.3.4 Modification of Ceria by Other Oxides 231
8.4 Ex situ CO Adsorption at Room Temperature 234
8.5 In situ FTIR Measurements at Increasing Temperature 238
8.6 Operando Measurements of CO₂ Uptake 240
8.7 Final Remarks 245

9 Determination of Dispersion of Gold-Based Catalysts by Selective Chemisorption 253
Michela Signoretto, Federica Menegazzo, Valentina Trevisan, and Francesco Pinna
9.1 On Gold Dispersion 253
9.2 How to Measure Gold Dispersion 255
 9.2.1 Electron Microscopy 255
 9.2.2 XRD 256
 9.2.3 Selective Chemisorption 257
 9.2.4 Other Techniques 260
9.3 Selective Chemisorption on Gold Catalysts 262
 9.3.1 O₂ Chemisorption 262
 9.3.2 H₂ Chemisorption 264
 9.3.3 Methyl Mercaptane Chemisorption 264
 9.3.4 CO Chemisorption 265
9.4 Pulse Flow CO Chemisorption at Low Temperatures 266
 9.4.1 Apparatus for Pulse Flow CO Chemisorption 267
 9.4.2 Pulse Flow CO Chemisorption Method 269
 9.4.2.1 Au/TiO₂ samples 270
 9.4.2.2 Au/ZrO₂ samples 273
Contents

9.4.2.3 Au/CeO₂ samples 276
9.4.2.4 Au/Fe₂O₃ sample 277
9.4.3 Consideration on the Chemisorption Stoichiometry 277
9.5 Final Remarks 279

10 New Findings in CO Oxidation 285
Yoshiro Shimojo and Masatake Haruta
10.1 Introduction 285
10.2 An Overview of Catalytic CO Oxidation 286
10.3 Environmental TEM Observation under CO Oxidation 291
10.4 Stability of Nanoparticulate Gold Catalysts 292
10.4.1 Al₂O₃ Support 293
10.4.2 SiO₂ Support 296
10.4.3 TiO₂ Support 298
10.4.4 MnOₓ Support 300
10.4.5 Fe₂O₃ Support 300
10.4.6 CeO₂ Support 303
10.5 New Attempts in the Preparation of Gold Catalysts 304
10.6 Summary 306

11 The Role of Gold Catalysts in C–H Bond Activation for the Selective Oxidation of Saturated Hydrocarbons 311
Sarwat Iqbal, Gemma L. Brett, and Graham J. Hutchings
11.1 Introduction 311
11.2 Small Alkanes 312
11.2.1 Methane and Ethane 312
11.2.2 Propane 315
11.3 Propene 316
11.3.1 Effect of Support 317
11.3.2 Gold Particle Size and Shape Effects 320
11.3.3 Promoters 321
11.3.4 Oxidation of Propene with Oxygen 321
11.4 Effect of the Preparation Method 323
11.4.1 Cyclohexane 326
11.5 Summary 328
12 Liquid-Phase Oxidation Using Au-Based Catalysts 341
Nikolaos Dimitratos, Ceri Hammond, and Peter P. Wells
12.1 Introduction 341
12.2 Liquid-Phase Oxidation of Oxygen-Containing Organic Compounds 342
12.2.1 Supported Au Catalysts 342
12.2.2 Supported Au–Pd- and Au–Pt-Based Catalysts 363
12.2.3 Supported Au–Cu- and Au–Ag-Based Catalysts 374
12.2.4 Supported Au-Based Trimetallic Catalysts 375
12.3 Conclusions and Future Perspectives 376

13 Supported Gold Nanoparticles as Heterogeneous Catalysts for C–C Coupling Reactions 389
Ana Primo and Hermenegildo Garcia
13.1 Palladium as a Catalyst for Carbon–Carbon and Carbon–Heteroatom Cross-Coupling Reactions 390
13.2 Gold vs. Palladium 393
13.3 Homocoupling of Arylboronic Acids 395
13.4 Suzuki–Miyaura Cross-Coupling Promoted by Supported Au NPs Assisted by Light 398
13.5 Sonogashira Coupling 402
13.6 Role of Pd Impurities on Au-Catalyzed Sonogashira Coupling 407
13.7 Conclusions and Final Remarks 410

14 Toward Chemoselectivity: The Case of Supported Au for Hydrogen-Mediated Reactions 415
Fernando Cárdenas-Lizana and Mark A. Keane
14.1 Introduction/Scope 415
14.2 Application of Gold in Hydrogen-Mediated Reactions 417
14.2.1 Hydrogen–Gold Interaction 417
14.2.2 Hydrogen-Mediated Reactions Catalyzed by Gold 419
14.3 Case Study 1: Environmental Pollution Control; Hydrodechlorination of Chloroaromatics 424
14.3.1 Background 424
14.3.2 Gold-Promoted Gas-Phase Catalytic Hydrodechlorination of Chlorophenols 425

14.4 Case Study 2: Production of Fine Chemicals; Hydrogenation of Nitroaromatics 432
14.4.1 Background 432
14.4.2 Gold-Promoted Gas-Phase Catalytic Hydrogenation of Nitrocompounds 434

14.5 Concluding Remarks and a Look to the Future 441

15 Homogenous Gold Catalysis 465
David Zahnner, Matthias Rudolph, and A. Stephen K. Hashmi
15.1 Introduction 465
15.2 The First Methodology: Asymmetric Gold Catalysis 466
15.3 The Most Basic Reactivity Pattern: Nucleophilic Attack on Carbon–Carbon Multiple Bonds 467
15.3.1 Nitrogen Nucleophiles 467
15.3.2 Oxygen Nucleophiles 468
15.3.3 Carbon Nucleophiles 470
15.4 Enyne Cyclizations 471
15.5 Gold Catalysis with Propargyl Esters and Related Compounds 473
15.5.1 1,2-Migration 474
15.5.2 1,3-Migration 475
15.5.3 Long-Range Migrations 476
15.6 Gold-Catalyzed Oxidations of Alkynes 477
15.6.1 Sulfoxides 478
15.6.2 Amine Oxides 478
15.7 Oxidative Couplings with Gold 479
15.8 Transmetalation/Cross-Coupling 483
15.9 Generation and Usage of Dipoles in Gold Catalysis 484
15.10 A³-Couplings 485
15.11 Dual Activation 485
15.12 Gold Catalysis Combined with Organocatalysis 486
15.13 Functionalizing Deauration 488
15.14 Glycosylation via Gold Catalysis 489
Contents

15.15 Ring Enlargements/Strained Substrates 489
15.16 Dehydrative Gold Catalysis 491
15.17 Conclusion 492

Index 501
Gold has always been recognized as a metal with special properties. Since ancient times gold has been used as a jewel, as a decorative material, or as a metal with therapeutic actions. More recently a new field of application of this extraordinary metal appears related to its characteristics as a catalytic material. Indeed, since the discovery in 1988 of its activity in two fundamental reactions—the oxidation of CO to CO$_2$ (Haruta) and the hydrochlorination of ethylene (Hutchings)—many studies and a constant growth of literature citations deal with this metal.

The discovery and the subsequent success of gold as a catalytically active metal were due to the discovery of suitable methods of obtaining finely dispersed nanoparticles. This is the main reason why the preparation for obtaining an active gold-based catalyst is so important. Gold is a metal with a relatively low melting point, especially if compared to the most used palladium and platinum. Therefore, it is difficult to disperse gold, especially at the nanoscale, the useful dimension in catalysis. The difficulties and trials devoted to obtaining highly dispersed gold catalysts are discussed in the first part of this book (Chapters 1–5) by experts of recognized reputation in this specific field. In particular Chapter 1 deals with the deposition-reduction method, which constitutes the historical method for gold catalyst synthesis. Chapter 2 presents the basis of one of the emerging techniques (sol immobilization) based on the use of preformed gold nanoparticles, whereas Chapter 3 deals with nascent nanoparticles trapped on a matrix (SMAD). A different approach for controlling the particle growth with the use of exotemplates is reported in Chapter 4. Many other methods that have led to excellent catalytic results are summarized in Chapter
5, which gives a comprehensive overview of the currently available methodologies.

The second part of the book is dedicated to characterization, where both surface and bulk techniques are presented. Actually there is not a single technique able to answer all the questions related to the possible correlation between structure and activity or disclose the real structure of gold catalysts under operative conditions. This section helps to understand the possibilities that different techniques offer from both a structural and a reactivity point of view. Structural problems solved by transmission electron microscopy (Chapter 6) and X-ray photoelectron spectroscopy (Chapter 7) related to gold catalysts are presented by experts in the field. Moreover, insights into the comprehension of real active sites are shown by the use of the interaction between gold active sites and molecular probes. It is the case of infrared studies (Chapter 8) as well as selective chemisorption (Chapter 9) that is able to provide information about the chemical activity of the systems.

The third part of the book is obviously devoted to the main gold catalytic applications, and we proudly present contributions of the founders of this chemistry, Prof. Masatake Haruta and Prof. Graham J. Hutchings, together with other leading exponents in the field. From Chapter 10 to Chapter 14 updated and still challenging applications of heterogeneous gold catalysts are shown: CO oxidation (Chapter 10), a well-studied reaction not yet completely understood; C–H activation (Chapter 11), a challenging application not only for gold but also where gold could be peculiar; oxidation reactions in the liquid phase (Chapter 12), where gold catalysts showed enhanced properties compared to classical oxidation catalysts; coupling reactions (Chapter 13), where gold catalysts represent one of the few examples of really heterogeneous catalysts; and hydrogenation reactions (Chapter 14), where gold is able to impart to the catalyst peculiarities in terms of selectivity.

The last chapter (Chapter 15) differs from the others because it presents the catalytic uses of gold in the homogeneous phase. The chapter is presented by one of the most important figures in the field, Prof. Hashmi, and it is a good source of information on the potentiality of gold, even for nonexperts in the field of homogeneous catalysis.
As the editors we believe that all the contents of this book constitute a valuable contribution in understanding not only why gold attracted so much interest in the catalysis scientific community but also why gold has become so popular in quite recent years. We would like to warmly thank all the authors for their excellent contributions, making this book useful for both researchers already involved in gold catalysis and the ones who would like to approach this field.

Laura Prati
Alberto Villa